2,260 research outputs found

    Triggers for the critical engagement with decision support systems

    Get PDF

    Virtual management of complex infrastructure:information systems in the age of big data

    Get PDF

    Intensity distribution of non-linear scattering states

    Get PDF
    We investigate the interplay between coherent effects characteristic of the propagation of linear waves, the non-linear effects due to interactions, and the quantum manifestations of classical chaos due to geometrical confinement, as they arise in the context of the transport of Bose-Einstein condensates. We specifically show that, extending standard methods for non-interacting systems, the body of the statistical distribution of intensities for scattering states solving the Gross-Pitaevskii equation is very well described by a local Gaussian ansatz with a position-dependent variance. We propose a semiclassical approach based on interfering classical paths to fix the single parameter describing the universal deviations from a global Gaussian distribution. Being tail effects, rare events like rogue waves characteristic of non-linear field equations do not affect our results.Comment: 18 pages, 7 figures, submitted to Proceedings MARIBOR 201

    Optimization-based decision-making models for disaster recovery and reconstruction planning of transportation networks

    Get PDF
    The purpose of this study is to analyze optimization-based decision-making models for the problem of Disaster Recovery Planning of Transportation Networks (DRPTN). In the past three decades, seminal optimization problems have been structured and solved for the critical and sensitive problem of DRPTN. The extent of our knowledge on the practicality of the methods and performance of results is however limited. To evaluate the applicability of those context-sensitive models in real-world situations, there is a need to examine the conceptual and technical structure behind the existing body of work. To this end, this paper performs a systematic search targeting DRPTN publications. Thereafter, we review the identified literature based on the four phases of the optimization-based decision-making modeling process as problem definition, problem formulation, problem-solving, and model validation. Then, through content analysis and descriptive statistics, we investigate the methodology of studies within each of these phases. Eventually, we detect and discuss four research improvement areas as [1] developing conceptual or systematic decision support in the selection of decision attributes and problem structuring, [2] integrating recovery problems with traffic management models, [3] avoiding uncertainty due to the type of solving algorithms, and [4] reducing subjectivity in the validation process of disaster recovery models. Finally, we provide suggestions as well as possible directions for future research.TU Berlin, Open-Access-Mittel - 202

    Understanding and managing three-dimensional/four-dimensional model implementations at the project team level

    Get PDF
    This paper introduces an extant, theoretical, social-psychological model that explains the sense-making processes of project managers confronted with a new technology to improve our understanding of project-based innovation processes. The model represents the interlinked processes through which project managers decide to implement new technologies on their projects according to the outcomes of these sense-making processes. The paper validates the model against observations gathered in four case studies of technology implementation on construction projects. Doing so, it assesses the general usefulness of the model to explain the success of technology implementation dynamics in project teams. The paper also derives a number of management suggestions from the model: for example, project managers should focus squarely on the immediate benefits of the technology in improving work processes on the project instead of focusing on long-term strategic firm or industry benefits
    • …
    corecore